NeRFs for All - A probe into the accessibility of NeRFs
for Educational Use

Anmol Mansingh Keagan Pinto Raghav Mishra
anmolmsg@umich.edu keaganjp@umich.edu imraghav@umich.edu
Abstract

Neural Radiance Fields (NeRFs) are increasingly being adopted for personal-use
applications, such as creating views from amateur videos and reconstructing small
artifacts in 3D. However, the complexity and inaccessibility of leading implementa-
tions like NVIDIA’s InstantNGP and Luma Al at the granular level pose challenges
for novice programmers. We take an easily-understandable NeRF architecture,
written entirely in Python, and trained it on a synthetic dataset from the original
NeRF paper, and then adapt it for more challenging data such as the Middlebury
dino dataset. This would further our aims of using NeRF architectures, to positively
impact and enhance the quality of education by increasing the accessibility of
such 3D models to the wider public. Our findings show promising convergence
and performance on synthetic data (max val PSNR: 27.3 dB), but a decline in
effectiveness with the Middlebury dataset (max val PSNR: 23.1 dB). We then
highlight our learnings and suggest ways to overcome the challenges we faced.
We conclude with potential future work integrating InstantNGP’s COLMAP for
enhanced camera parameter generation in our model. This study contributes to
making NeRF technology more accessible to a broader user base. Github

1 Executive Overview

The education sector has seen a dire need for boosting student engagemnent through interactive
teaching tools. Recent work (1)) argues that VR-augmented education helps students retain knowledge
better. Hence, this sector has seen widespread adoption of VR equipment with the aim of providing
students access for tools for 3D exploration. However, there has been a dearth of generation of such
content, especially on an amateur level by the educators themselves. 3D cameras are prohibitively
expensive (2), and often require extensive setup in generating reconstructions of ancient ruins/historic
sites, for example.

Over the past three years, Neural Radiance Fields (NeRFs) (3) have emerged as a significant advance-
ment in 3D rendering and processing. In the landmark paper, they were introduced with the primary
aim of generating novel intermediate views from a given input view. NeRFs accomplished this task
by representing a scene and approximating it by a continuous volumetric function underneath.

This is where other software approaches for 3D reconstruction come in, and NeRFs have emerged as
a robust way of doing so. With the introduction of the InstantNGP offering (4), NVIDIA has been at
the forefront of making 3D reconstruction from NeRFs incredibly easy. Also, mobile applications
like Luma AT are intended for the same purpose, albeit on a However, we observe that the workings
of such powerful, plug-and-play tools, by design, trade efficiency and speed for understandability and
customization. Hence, there is a potential barrier to entry for wider adoption.

As we discuss throughout this report, we started with a simple, Pythonic NeRF implementation that
is more understandable and powerful enough to work on well-processed data, like the synthetic Lego
dataset given in the original paper. We then adapt it to less processed data (Middlebury dataset),

EECS 504, Fall 2023 Computer Vision Final Project

https://github.com/anmolmansingh/NeRFForAll
https://vision.middlebury.edu/mview/data/

through a series of data processing and camera parameter transformations, and note the results and
deficiencies with doing so.

2 Background and Impact

Since the inception of NeRFs (3)), they have revolutionized the field of 3D rendering. NeRFs have
been primarily used in computer vision and graphics for photorealistic scene reconstruction. Their
ability to synthesize novel views of complex scenes from a sparse set of images has set a new standard
in the field (5).

The application of NeRFs in educational settings is relatively new. (1)) explored virtual reality
(VR) in education, highlighting the need for immersive and interactive content to enhance learning
experiences. However, they did not specifically address the use of NeRFs.

The challenges of content generation for educational purposes have been discussed extensively.
(6) noted the high costs and technical expertise required for 3D content creation, particularly for
historical and archaeological sites. This gap in accessible content creation tools has been a barrier to
the widespread adoption of VR in classrooms.

On the software front, NVIDIA’s InstantNGP has been a significant step forward in simplifying
3D reconstruction (4). However, its ease of use often comes at the expense of customizability.
Similarly, mobile applications like Luma AI offer user-friendly interfaces but lack the depth required
for educational purposes. In contrast, nerfstudio (7), a project by Berkeley Al researchers, has been
working towards a more modular and accessible approach to NeRFs, which could potentially lower
the barrier to entry for educational content creators.

Our research builds upon these foundations, aiming to strike a balance between simplicity, under-
standability, and functionality in NeRF implementation. By adopting a simple NeRF architecture that
can be run on Colab’s free tier, we address the specific needs of individual educators that previous
works have identified but not fully resolved. Thus, our approach is geared towards enabling educators
to create their 3D content with minimal technical overhead, thus democratizing access to high-quality
educational resources.

3 Methodology

3.1 Datasets and Data Pre-processing

We used a synthetic dataset called the Lego Dataset (From the NeRF paper) consisting of train,
validation and test views. for our baseline model. To extend our models, we selected the Middlebury
Dino dataset for training and Middlebury DinoRing Dataset for testing. The testing dataset consisted
of views collected in a hemispherical fashion. This dataset consisted of 100 views for training, 10
views for validation, and 60 views for testing which were randomly sampled.

The Data we used consisted of:

* RGB images (.png files)

* Camera Parameters (.txt files and .json files)
For the data pre-processing, since we aimed to train the NeRFs with compute restrictions we resized
the images to 200x200. Originally, the Lego Dataset had a size of 800x800. So we scaled the extrinsic
matrix using the scaling matrix as shown below. Where, s, and s, is the ratio of the new dimensions

and the old dimensions. Similarly, we pre-processed the original Middlebury data from 640x480 to
200x200 and random sampling to generate similar sizes as the Lego dataset used.

R3xz t
O1x3 1

Above is the representation of the transforms applied on the image parameters.

»

x

cod o

0
0
1
0

= O OO

0
0
0

3.2 Model Architecture

The NeRF algorithm represents a scene using a fully-connected (non-convolutional) deep network,
whose input is a single continuous 5D coordinate (spatial location (X, y, z) and viewing direction
(0, ¢)) and whose output is the volume density and view-dependent emitted radiance at that spatial
location. Besides this, the input is positionally encoded with high-frequency representations of the
input coordinates. This enhances the representations that the NeRF learns. NeRF uses a differentiable
rendering technique to simulate the process of camera rays passing through a scene. This allows the
use of gradient descent to optimize the neural network’s parameters.

L m =3

Ray 2

Yoo et

(209~ ||| |- ®GBo) ‘ }
F@

(a) Overall NeRF architecture (b) NeRF View Synthesis
Figure 1: NeRF Architecture

The main components of the NeRF architecture are:

¢ Input:The input to the NeRF model is a set of 5D coordinates (x,y,z,0,¢)[Fig.1a], which are
the spatial locations of the scene.

* Positional Encoding: To allow the network to better represent high-frequency functions,
NeRF applies a positional encoding to the input coordinates. This encoding maps each input
coordinate to a higher-dimensional space using a set of sinusoidal functions.

* Volume Rendering: To render a 2D image from this representation, NeRF uses classical
volume rendering techniques. It casts rays from the camera through each pixel of the image
plane and into the scene. As the ray traverses the scene, it samples points along its path. The
color and density at each point are determined by the neural network, and the final color of
the pixel is computed by accumulating these values along the ray, taking into account the
transmittance.

* Multi-Layer Perceptron: This fully-connected Neural Network consists of 8 layers with
fixed dimensionality of 256.

* Scene Representation: After training, the neural network effectively becomes the scene
representation. It encodes both the geometry (via volume density) and the appearance (via
color) of the scene as a function of position and direction. [Fig.1b]

During training, NeRF optimizes the network weights using a collection of 2D images of a scene
from known camera positions. It uses stochastic gradient descent to minimize the error between the
rendered images and the actual images. After training, NeRF can synthesize novel views of the scene
by rendering images from new camera positions. It does this by casting rays through the volume,
querying the neural network, and applying the volume rendering equation.

3.3 Implementation Details

For training on the synthetic Lego dataset, we trained the model with a batch size of 10000 rays for
3000 iterations with a learning rate of /e-3 using an Adam optimizer. This required relatively lower
number of training steps as the data was synthetically generated and meant for NeRFs.

The Middlebury dataset training was far more challenging. We trained on a batch size of 20000 rays
for 10000 iterations with a learning rate of /e-5. Although we trained it for a substantial amount of
time the validation PSNR plateaued at around 23.1 dB compared to the 27.3 dB on the Lego dataset.
Due to computational restrictions, we were unable to train the Middlebury datasets with larger batch
size and for a longer duration. However, we were able to obtain noisy novel views with our training
shown in the results section below.

4 Results

Here are the novel views generated by the model:

(a) Processed lego (b) Novel View 1 (c) Novel View 2

Figure 2: Synthetic lego dataset

(a) Processed dino (b) Novel View 1 (c) Novel View 2
Figure 3: Middlebury Dino dataset

Table 1: Maximum PSNR attained (on train and val datasets)

Dataset val PSNR (dB) Iterations dataset size
Lego 27.3 3000 12.6 MB
Middlebury Dino 23.1 8000 98 MB

4.1 Conclusion and Future Work

We gained a lot of insights during the data processing stage. Initially, we found that the vanilla
architecture expected a .npz file consisting of preprocessed 200x200 images, neatly packaged with
their camera-to-world transformation matrix parameters. We wrote additional helper code to perform
this preprocessing to fit the After we refactored the architecture to handle bigger images, we began
to see CUDA out of memory errors, indicating that the Colab compute limits were reached. Next,
we decided to resize the Middlebury Dino images to 200x200 (as they were originally 640x480).
However, this resulted in very poor training performance. Upon further inspection, we realized that
the camera parameters were not scaled accordingly, which we recalled as a key learning in the course.
Then, we took care to scale them according to the resizing operation.

As this implementation requires the camera parameters (which we were given for both datasets), one
extension we wish the perform as future work is to integrate InstantNGP’s COLMAP utility to fetch
the camera parameters for any video/set of images, which will be a significant usability improvement
from the perspective of our users (educators).

References

[1] S. Kavanagh, A. Luxton-Reilly, B. Wuensche, and B. Plimmer, “A systematic review of virtual reality in
education,” Themes in Science and Technology Education, vol. 10, no. 2, pp. 85-119, 2017. [Online].
Available: https://www.learntechlib.org/p/182115/

[2] C. Nock, O. Taugourdeau, S. Delagrange, and C. Messier, “Assessing the potential of low-cost 3d cameras
for the rapid measurement of plant woody structure,” Sensors, vol. 13, no. 12, pp. 16216-16233, 2013.
[Online]. Available: https://www.mdpi.com/1424-8220/13/12/16216

[3] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing
scenes as neural radiance fields for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99-106,
2021.

https://www.learntechlib.org/p/182115/
https://www.mdpi.com/1424-8220/13/12/16216

[4] T. Miiller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution
hash encoding,” ACM Transactions on Graphics (ToG), vol. 41, no. 4, pp. 1-15, 2022.

[5] Z. Li, S. Niklaus, N. Snavely, and O. Wang, “Neural scene flow fields for space-time view synthesis of
dynamic scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 6498-6508.

[6] J. Hardesty, J. Johnson, J. Wittenberg, N. Hall, M. Cook, Z. Lischer-Katz, Z. Xie, and R. H. McDonald, “3d
data repository features, best practices, and implications for preservation models: findings from a national
forum,” 2020.

[7] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, T. Wang, A. Kiristoffersen, J. Austin, K. Salahi,
A. Ahuja, D. Mcallister, J. Kerr, and A. Kanazawa, “Nerfstudio: A modular framework for neural
radiance field development,” in ACM SIGGRAPH 2023 Conference Proceedings, ser. SIGGRAPH
’23. New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3588432.3591516

https://doi.org/10.1145/3588432.3591516

	Executive Overview
	Background and Impact
	Methodology
	Datasets and Data Pre-processing
	Model Architecture
	Implementation Details

	Results
	Conclusion and Future Work

